Liquid Ring Type Vacuum Pumps (2BE3) / Water Ring Vacuum Pump

  • Model NO.: 2BE3
  • Structure: Rotary Vacuum Pump
  • Vacuum Degree: High Vacuum
  • Working Conditions: Wet
  • Material: Casting Iron or Ss
  • Drive: Motor
  • Power: 1.5-500kw
  • Application1: Paper Making
  • Application3: Chemical
  • Transport Package: Wooden Case
  • Origin: China
  • Oil or Not: Oil Free
  • Exhauster Method: Kinetic Vacuum Pump
  • Work Function: Mainsuction Pump
  • Color: Blue
  • Connect: Belt or Direct Drive
  • Size: 2be1-2be3
  • V.: 380V or 6000V
  • Application2: Mine
  • Trademark: greentech
  • Specification: 2BE3
  • HS Code: 8414
Water Ring Type Vacuum Pumps (2BE3)
Liquid Ring Vacuum Pump
Liquid Ring Type Vacuum Pumps (2BE3) / Water Ring Vacuum Pump
Greentech International (Zhangqiu) Co., Ltd
is the professional vacuum pump supplier.
The application range and characteristics:
2BE3 series water ring vacuum pumps and compressors are designed and manufactured by our company integrating with the advanced technology abroad. They are not only can save energy, but also can work constantly for a long time.
Under the rough vacuum situation, the requirements for the liquid ring vacuum pumps are very rigorous. So the 2BE3 series products are designed for pumping various gases. They are widely used in many industries, such as, the paper, mine, power station, chemical etc.

2BE3 series products can be driven with many different sets, such as, the V-belt, synchronal motor, gear box etc. In order to save space, more than two or at most four sets of the 2BE3 series pumps can be driven by one motor simultaneously.
When set a middle wall in the casing, the pressure tolerance between the two sides is lower than 80kPa and the two parts can work in different vacuum status respectively. Thus one pump can work well like two. Hereby the product operating flexibility is improved effectively.
The main characteristics of 2BE3 series products:

· The tolerance, corrosive status, and the begrime situation can be easily observed by the big inspection port on both sides of the end-shield.
· The 2BE3 series pumps have flanges both on the top and sides with the same diameter. It is more convenient to connect with the 2BE3 series pumps.
· The bearings are all used of the imported products in order to keep the precise orientation and the high stability during the working of the pump.

· The material of the impeller is QT400 nodular iron or steel plates for ensuring the stability of the pump under the various rigorous situations and extending the life of the pump effectively.
· The casing is made of steel or stainless steel plates to extend the lifetime of the 2BE3 series pumps.
· The shaft bushing is made of stainless steel plates to extend the life of the pumps 5 times more than the normal material.

· The V-belt pulley (when the pump is driven by the belt) is used of the high precise pulley with taper bushing to keep the reliability of the pump and extend its life. And it is also easy to mantle and dismantle.
· The unique design of setting the separator above the pump saves the space and decreases the noise efficiently.
· All the spare parts are cast by the resin sands that make the surface of the pump very smooth. So it is not necessary to cover the surface of the pump with putty and gives out the heat efficiently.
· The mechanical seals (optional) are all used the imported products so as to avoid the leakage during the working of the pump for a long time.

Liquid Ring Type Vacuum Pumps (2BE3) / Water Ring Vacuum Pump

Liquid Ring Type Vacuum Pumps (2BE3) / Water Ring Vacuum Pump
Liquid Ring Type Vacuum Pumps (2BE3) / Water Ring Vacuum Pump
 
Type Speed
(Drive type)
r/min
Max shaft power
kW
Motor Power
kW
Suction Capacity Limited vacuum
(abs)
mbar
Weight of bare pump with separator
kg
m 3 /h m 3 /min
2BE3 400 340(V-Belt/gear box)
390(V-Belt/gear box)
440(V-Belt/gear box)
490(V-Belt/gear box)
530(V-Belt/gear box)
570(V-Belt/gear box)
610(V-Belt/gear box)
82
95
115
134
148
167
189
110
110
132
160
185
200
220
4850
5650
6250
6900
7470
8000
8600
80.8
94.2
104.2
115.0
124.5
133.3
143.3
160 3275
2BE3 420 340(V-Belt/gear box)
390(V-Belt/gear box)
440(V-Belt/gear box)
490(V-Belt/gear box)
530(V-Belt/gear box)
570(V-Belt/gear box)
610(V-Belt/gear box)
108
132
157
180
204
229
260
132
160
185
200
220
250
315
6650
7650
8550
9400
10150
10700
11600
110.8
127.5
142.5
156.6
169.2
178.3
193.3
160 3720
2BE3 500 260(gear box)
300(gear box)
340(gear box)
380(gear box)
420(gear box)
470(gear box)
142
171
203
238
277
338
160
200
250
280
315
400
8700
10150
11400
12700
13800
15500
145.0
169.2
190.0
211.7
230.0
258.3
160 6110
2BE3 520 260(gear box)
300(gear box)
340(gear box)
380(gear box)
420(gear box)
470(gear box)
172
210
245
288
337
412
200
250
280
315
400
500
10700
12300
14000
15400
16800
18700
178.3
205.0
233.3
256.7
280.0
311.7
160 6740
2BE3 600 230(gear box)
260(gear box)
290(gear box)
320(gear box)
350(gear box)
400(gear box)
205
243
285
322
365
465
250
280
315
355
450
560
12700
14400
16000
17500
19000
21600
211.7
240.0
266.7
291.7
316.7
360.0
160 9100
2BE3 620 230(gear box)
260(gear box)
290(gear box)
320(gear box)
350(gear box)
400(gear box)
250
300
340
390
450
570
280
355
400
450
500
630
15600
17700
19500
21300
23200
26200
260.0
295.0
325.0
355.0
386.7
436.7
160 10700
2BE3 670 210(gear box)
240(gear box)
270(gear box)
300(gear box)
320(gear box)
330(gear box)
370(gear box)
280
350
415
465
523
545
670
315
400
450
560
630
630
800
18300
20400
23160
25500
27000
27720
30960
305
340
386
425
450
462
516
160 12700
2BE3 720 190(gear box)
210(gear box)
240(gear box)
270(gear box)
300(gear box)
340(gear box)
345
395
475
550
642
795
400
450
560
630
710
900
21900
24300
27480
30540
33780
38100
365
405
458
509
563
635
160 15700

A reaction turbine is a type of Steam Turbine that works on the principle that the rotor spins, as the name suggests, from a reaction force rather than an impact or impulse force.

In a reaction turbine there are no nozzles to direct the steam like in the impulse turbine.

Instead, the blades that project radially from the outer edge of the rotor are shaped and mounted so that the shape between the blades, created by the cross-section, create the shape of a nozzle.  These blades are mounted on the revolving part of the rotor and are called the moving blades.


The fixed blades, which are the same shape as the moving blades, are mounted to the outer casing where the rotor revolves and are set to guide the steam into the moving blades.  Below is a simple diagram of reaction turbine blades:


Reaction Turbine Principle:

In the case of reaction turbine, the moving blades of a turbine are shaped in such a way that the steam expands and drops in pressure as it passes through them. As a result of pressure decrease in the moving blade, a reaction force will be produced. This force will make the blades to rotate.

Turbines_impulse_v_reaction


Reaction Turbine Working:

A reaction turbine has rows of fixed blades alternating with rows of moving blades. The steam expands first in the stationary or fixed blades where it gains some velocity as it drops in pressure. Then enters the moving blades where its direction of flow is changed thus producing an impulse force on the moving blades. In addition, however, the steam upon passing through the moving blades, again expands and further drops in pressure giving a reaction force to the blades.

This sequence is repeated as the steam passes through additional rows of fixed and moving blades.

Note that the steam pressure drops across both the fixed and the moving blades while the absolute velocity rises in the fixed blades and drops in the moving blades.

The distinguishing feature of the reaction turbine is the fact that the pressure does drop across the moving blades. In other words, there is a pressure difference between the inlet to the moving blades and the outlet from the moving blades.

Special Aspects of Reaction Turbines

  • There is a difference in pressure across the moving blades. The steam will, therefore, tend to leak around the periphery of the blades instead of passing through them. Hence the blade clearances as to maintain as minimum as possible.
  • Also, due to the pressure drop across the moving blades, an unbalanced thrust will be developed upon the rotor and some arrangement must be made to balance this.


Reaction Steam Turbine

Reaction Steam Turbine

Shandong Qingneng Power Co., Ltd. , http://www.qnpturbines.com